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Abstract 

Background: Targeting the epidermal growth factor receptor (EGFR) with cetuximab or 

panitumumab (anti-EGFR MAb) has been historically reserved for patients with RAS/BRAF wild-

type advanced colorectal cancer (CRC). However, results of recent studies including PARADIGM 

and PRESSING evaluating the role of negative hyperselection of RAS wild-type CRC by alterations 

in other genes suggest that other genomic factors beyond RAS/BRAF/ERBB2 might influence the 

response to anti-EGFR MAbs in CRC. Although vast, current data on the predictive role of individual 

biomarkers to anti-EGFR MAb is often misunderstood. The aim of the study: In this review, in light 

of recent findings, we aimed to summarize existing data on the influence of various signaling 
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pathways and their individual components along with nongenomic factors for the optimal patient 

selection for anti-EGFR MAbs. Materials and methods: To collect available information on possible 

mechanisms of resistance to anti-EGFR MAb in patients with colorectal cancer we searched PubMed 

and ClinicalTrials.gov in May 2024. We also searched proceedings from the major oncology 

conferences ESMO, ASCO, and ASCO GI up to May 2024. We further scanned reference lists from 

eligible publications. Results: In this review we outline current knowledge on the mechanisms of 

resistance to anti-EGFR MAbs beyond traditional KRAS/NRAS/BRAF mutations in CRC. We focus 

on the alterations of genes involved in signaling pathways downstream of EGFR that can be detected 

by comprehensive tumor profiling in real-world clinical practice. Conclusion: Despite many 

mechanisms affecting various signaling pathways beyond the traditional KRAS/NRAS/BRAF 

mutations that are thought to be implicated in the resistance to anti-EGFR MAb in CRC, future efforts 

are needed to clarify their significance. Ongoing sequencing efforts will clarify the need for 

expanding the list of alterations routinely tested for the selection of candidates for anti-EGFR MAb. 

Keywords: colorectal cancer; epidermal growth factor receptor; anti-EGFR resistance; cetuximab; 

panitumumab; anti-EGFR monoclonal antibodies 
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Introduction. Advanced colorectal 
cancer (CRC) is the third most commonly 
diagnosed cancer, and one of the leading 
causes of cancer-related deaths [1]. Many 
molecular mechanisms of CRC progression 
have been described, including genes involved 
in Ras/Raf/MEK/ERK known as the mitogen-
activated protein kinases (MAPK) pathway, 
the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT) pathway as 
well as Wnt/β-catenin, transforming growth 
factor-β1/SMAD (TGF-β/SMAD) and Janus 
kinase/signal transducer and activator of 
transcription 3 (JAKs/STAT3) pathways [2]. 
Concomitantly genes regulating metabolism, 
as well as genes responsible for 
biotransformation of xenobiotics and 
antioxidant enzymes etc., affect the 
effectiveness of anti-EGFR MAb therapy, 
reducing it [3]. 

Development and approval of anti-
EGFR monoclonal antibodies (MAb), 
cetuximab and panitumumab, have provided a 
significant survival benefit for patients with 
KRAS/NRAS (RAS) and BRAF wild type (wt) 
CRC [4]7. However, while the development 
of acquired resistance to treatment is 
inevitable in most patients, some patients 
demonstrate intrinsic resistance [5-8]. In 
current clinical practice, treatment decisions  

regarding anti-EGFR MAbs are based on the 
analysis of classic biomarkers of resistance, 
such as mutations in RAS and BRAF genes  
[9, 10]. Various nonsystemic studies have 
previously reported on the influence of 
individual genomic alterations beyond 
RAS/RAF mutations on the benefit of anti-
EGFR MAb therapy. However, the results of 
PRESSING and PARADIGM trials have truly 
reopened the question of the optimal selection of 
CRC patients for the anti-EGFR MAbs. Unlike 
previous studies, these studies suggest that the 
simultaneous screening of various genes 
frequently upregulated in CRC might be the 
most effective approach [11, 12]. However, 
current data suggests that not all of the 
alterations might be the same in terms of 
influencing the resistance to therapy. Therefore, 
it is important to address the impact of 
individual alterations in various genes, as the 
genes included in diagnostic panels used in real-
world clinical practice might vary. In addition, 
several clinical trials are still ongoing (Table 1). 
In this review, we discuss current understanding 
of the mechanisms of resistance to anti-EGFR 
MAbs in CRC beyond RAS/BRAF V600 
mutations. Here, we review mechanisms of both 
primary and acquired resistance with a focus on 
altered signaling pathways, and not on 
differentiation between the two. 
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Table 1 

Active clinical trials associated with studying the mechanism of tumor resistance to the EGFR inhibitors cetuximab and panitumumab 

NCT Name 
Study 

Design 
Phase Status 

Patient 

population 
Mutations Treatment arms 

Primary 

end point 

Secondary/Explor

atory end point 

NCT03

263663 

Optimization of Individualized 

Therapy for CRCs With 

Secondary RESISTance 

Towards Anti-EGFR Targeted 

Therapy Using an Avatar Model 

(2016-003295-46) 

Observation

al 

Case-

Control 

Prospective 

II Recruit

ing 

Locally 

advanced 

CRC 

(n=1000) 

RAS wild-type Chemotherapy + targeted 

treatment according to the 

resistance mechanism to 

cetuximab pretreatment 

Chemotherapy according to 

physician’s choice after 

cetuximab pretreatment 

PFS at 5-7 

months 

N/A 

NCT03

908788 

EmutRAS: Detection of the 

Emergence of RAS (Rat 

Sarcoma Viral Oncogene 

Homolog) Mutations in 

Circulating DNA 

(Deoxyribonucleic Acid) in 

Patients With mCRC 

(Metastatic Colorectal Cancer) 

During Treatment with Anti-

EGFR (Epidermal Growth 

Factor Receptor) Therapy 

Intervention

al 

Non-

randomized 

Single 

Group 

Assignment 

N/A Active, 

not 

recruiti

ng 

mCRC 

(n=130) 

RAS/BRAF 

wild-type 

ctDNA test after 1st line with 

cetuximab/panitumumab 

Proportion 

of patients 

with 

mCRC 

who 

develop a 

RAS 

mutation 

under anti-

EGFR 

therapy 

PFS, OS at 36 

months, proportion 

of RAS/BRAF 

mutation 

NCT06

226857 

Other Oncogene Mutations for 

Anti-EGFR Efficacy in Patients 

with Left-sided RAS-wild Type 

Metastatic Colorectal Cancer 

(CRC01) 

Intervention

al 

Randomized 

Parallel 

Assignment 

III Recruit

ing 

mCRC 

(n=355) 

KRAS/NRAS/

BRAF wild-

type or 

KRAS/NRAS 

wild-type with 

unknown 

BRAF status 

Cohort A FOLFOX plus anti-

EGFR therapy (panitumumab 

or cetuximab) 

Cohort B FOLFOX plus anti-

EGFR therapy 

Cohort C FOLFOX ± 

bevacizumab 

PFS an 

average of 

3 years 

PFS, OS an 

average of 3 years, 

AEs 

NCT04

034173 

Optimal Anti-EGFR Treatment 

of mCRC Patients with Low-

Frequency RAS Mutation 

Intervention

al 

Randomized 

Parallel 

Assignment 

II Not yet 

recruiti

ng 

mCRC 

(n=120) 

RAS mutations Panitumumab, Irinotecan, 

Folinic acid, 5-FU 

OS up to 

60 months 

PFS, OS up to 60 

months  

ETS up to 48 

months 

DpR up to 48 

months 

Note: abbreviations: (m)CRC – (metastatic) colorectal cancer, ctDNA – circulating tumor DNA, PFS – progression-free survival, OS – overall survival, ORR – overall response rate, 

AEs – adverse events, ETS – early tumor shrinkage, DpR – depth of response, N/A – not applicable. 
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1. Unconventional mechanisms of 

RAS/RAF-mediated resistance. The 

mitogen-activated protein kinases (MAPK) 

pathway, often known as the 

Ras/Raf/MEK/ERK signaling pathway, is a 

highly conserved signal transduction pathway 

in all cells. The MAPK pathway is one of the 

best-characterized signaling cascades that 

regulates cell proliferation, differentiation, 

survival and apoptosis, by transmitting signals 

from upstream extracellular growth factors to 

various downstream effectors [13] (Fig.1). 

However, although widely investigated, there 

are still some unanswered questions regarding 

RAS/RAF-mediated resistance.  

 

 
Fig. 1. Schematic representation of commonly altered pathways driving therapy resistance  

and their key components in CRC resistant to treatment with anti-EGFR Mab 

 

 

1.1 Unanswered questions regarding 

RAS. Oncogenic mutations in RAS are the 

most common molecular event in CRC 

(Fig.2). RAS mutations are detected in up to 

60% of CRC patients; KRAS mutations are 

found in around 30% of cases, while NRAS 

mutations are found in about 5% of cases [14, 

15]. Activating mutations are predominantly 

located in 2, 3 and 4 exons, affecting the 

catalytic G domain. The majority of observed 

mutations are substitutions that occur in 

hotspots affecting codons 12 (70-80% of all 

cases), 13 and 61 [16]. Rare activating 

missense variants affect codons 59, 117 and 

146 [17]. Oncogenic activation of RAS genes 

is a known mechanism of resistance to anti-

EGFR MAbs in CRC patients [18], as shown 

in numerous clinical studies [19-24]. RAS 

mutations are routinely analyzed by PCR, and 

the implementation of NGS analysis may 

increase the detection rate by 9% with tissue 

and X ctDNA analysis, respectively [25]. 

 



 
Обзор 

Review 

 

  

Научные результаты биомедицинских исследований. 2025:11(1):5-30 
Research Results in Biomedicine. 2025:11(1):5-30 

9 

 

 
Fig. 2. Frequencies of commonly upregulated signaling pathways in CRC resistant  

to treatment with anti-EGFR MAb 

 

Although KRAS mutations are validated 

predictive biomarkers of resistance to 

cetuximab and panitumumab, patients 

harboring the KRAS G13D mutation might 

still derive benefit from cetuximab, as shown 

in several retrospective studies [26, 27]. This 

effect may be attributed to the atypical 

activating effect of the variant, as shown in 

functional studies [28]. A possible mechanism 

that distinguishes KRAS G13D from other 

activating variants was shown using a 

mathematical model and biochemical studies 

[29, 30]. According to the model, KRAS 

G13D is most likely sensitive to cetuximab 

due to a difference in the mechanism of 

interaction with NF1 and wt RAS. While other 

KRAS variants bind to wt RAS negative 

regulator NF1, effectively inhibiting the wt 

RAS inhibitor and leading to wt HRAS and 

NRAS activation, G13D does not interact with 

NF1, thus promoting NF1-mediated inhibition 

of wt RAS and the effective functioning of 

cetuximab. Thus, cetuximab treatment can 

block wt HRAS and NRAS activation. 

Although this hypothetical mechanism 

explains the atypical effect of the KRAS 

G13D variant, its clinical relevance remains 

unknown. Despite this evidence, a more recent 

retrospective analysis indicates that patients 

with KRAS G13D mutations are unlikely to 

respond to cetuximab [31]. However, both 

large retrospective and prospective trials 

failed to confirm this effect. Teipar et al. [27] 

reported a significant improvement of PFS 

(median, 7.4 vs 6.0 months; hazard ratio [HR], 

0.47; P = 0.039) and tumor response (40.5% v 

22.0%; odds ratio, 3.38; P = 0.042), but not 

survival (median, 15.4 vs 14.7 months; HR, 

0.89; P = 0.68) in those receiving cetuximab 

harboring KRAS codon 13 mutations. 

Similarly, in a retrospective analysis by 

Peeters et al. [32] the presence of KRAS G13D 

was significantly associated with a negative 

impact on OS (P = 0.0018). In a phase II 

Fleming single-stage design study by 

Schirripa et al. [33] evaluating the activity of 

single-agent cetuximab in KRAS G13D-

mutated CRC, the primary objective of the 

trial was not met, DCR at 6 months was 0%.  

Studies show that patients with low 

variant allele frequencies (VAF) of RAS/RAF 

might still be candidates for anti-EGFR 

therapy. In a post hoc analysis of the 

CRYSTAL study, it was shown that patients 

with RAS-mutated CRC whose mutations had 

low VAF in the tumor (0.1%-5%) benefited 

from the addition of cetuximab to FOLFIRI 

[34]. Similar results were obtained in a phase 

II ULTRA trial. Based on the results of this 

study, the optimal threshold for VAF of 

RAS/RAF mutations was established to be 5%. 

Across patients with RAS/BRAF mutation 

whose mutations had VAF of 5% and less, the 

response rate as well as median overall 

survival (OS) and progression-free survival 

(PFS) were similar to the RAS/BRAF wt 
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patient cohort [35]. Noteworthy, this threshold 

is only used when tissue is analyzed and is not 

applicable for ctDNA analysis. When ctDNA 

is used, the tumor is considered RAS-mutant if 

the mutation is identified with any VAF.  

Another member of the RAS oncogene 

family is HRAS. However, alterations in HRAS 

are rare in CRC [15], hence only anecdotal 

evidence points toward the association 

between HRAS mutations and resistance to 

anti-EGFR MAbs [36].  

In the case of KRAS G12C-mutated 

CRC, another treatment strategy is the 

combination of specific KRAS G12C 

inhibitors (i.e. sotorasib, adagrasib) to anti-

EGFR MAbs [37]. The combination treatment 

is preferable to KRAS G12C inhibitor 

monotherapy, as frequently observed 

mechanisms of acquired resistance to these 

drugs include new RTK pathway alterations, 

which can be targeted by EGFR inhibitors 

[38]. 

Finally, KRAS amplification is another 

alteration that can be found in CRC. KRAS 

amplifications are extremely rare among 

patients with CRC (<1%) and are usually 

mutually exclusive with other KRAS 

alterations [39]. KRAS amplification has been 

suggested to drive resistance to anti-EGFR 

treatment in a small patient cohort [18, 39, 40]. 

In vitro cetuximab could partially abrogate 

phosphorylation of MEK and ERK but, like in 

KRAS mutant cells, was unable to induce 

growth arrest in KRAS amplification-positive 

cells [18]. 

1.2 De novo RAS mutations and 

neoRAS. Another known mechanism of 

acquired resistance to anti-EGFR MAbs is the 

emergence of de novo RAS mutations in the 

course of treatment [18, 41, 42, 43]. The 

emergence of RAS mutant subclones can be 

detected months prior to the radiographic 

documentation of disease progression via 

liquid biopsy [18, 43]. At the same time, the 

discontinuation of anti-EGFR MAb might be 

associated with a decrease of the level of 

acquired RAS mutations [44]. Thus, 

assessment of acquired RAS mutations in 

liquid biopsies is necessary not only for the 

timely detection of acquired resistance to 

EGFR inhibitors, but also for when 

considering therapy re-challenge [45, 46, 47]. 

An opposite phenomenon known as 

‘neoRAS wild-type’ is characterized by the 

conversion of RAS-mutant tumors to RAS wt, 

as detected in ctDNA in the course of 

treatment with standard therapies. However, 

this phenomenon is thought to be uncommon, 

occurring in only 1-8% of patients [48]. One 

patient in the case series by Osumi et al. [49] 

with neoRAS has been reported to exhibit a 

long-term partial response (PR) to 

panitumumab in combination with irinotecan. 

Results of the SCRUM-Japan GOZILA study 

reported an incidence of neoRAS of 9%. In 

this study, out of 6 patients with neoRAS, 1 

patient had PR and another had SD for at least 

6 months [50]. 

1.3 Non-V600 BRAF mutations. 

Activating mutations in BRAF occur in 8-12% 

of patients with CRC, with the most common 

missense mutation BRAF V600E accounting 

for up to 95% of all BRAF mutations [51-54]. 

BRAF V600E is widely known to be one of the 

most common causes of primary resistance to 

EGFR therapy in CRC [55, 56]. BRAF V600E 

leads to constitutive activation of the MAPK 

pathway, and therefore inhibition of the 

MAPK pathway by EGFR inhibitors alone is 

not effective [57]. However, it has also been 

shown that monotherapy with BRAF 

inhibitors is also not effective in BRAF V600E 

CRC, which may be explained by EGFR-

mediated feedback reactivation of MAPK 

signaling [58]. The addition of BRAF 

inhibitors in combination with EGFR 

inhibitors has been shown to restore the 

sensitivity of BRAF-mutant tumors [59-65]. A 

combination of encorafenib and cetuximab 

was approved by the FDA for the treatment of 

patients with BRAF V600E CRC based on the 

results of the BEACON trial [62]. 

Class II and III BRAF variants can be 

seen in about 2.2% of CRC patients. BRAF 

non-V600 mutations mostly affect codons 594 

and 596 [66, 67, 68]. Class II mutations are 

activating and signal in dimers in a RAS-

independent manner. Class III BRAF 

mutations typically exhibit reduced kinase 

activity or absence thereof, however can still 
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activate MAPK through signaling through 

increased RAS binding or CRAF activation, 

which is RAS-dependent [69]. 

The data on the effect of non-V600 

BRAF mutations in terms of their influence on 

the efficacy of anti-EGFR therapy is 

conflicting [70]. Preclinical data as well as 

several case reports suggest that BRAF non-

V600 mutations (specifically, class IIB and III 

mutations) may be sensitive to EGFR 

inhibition due to the dependency on upstream 

receptor tyrosine kinase signaling [51, 71].  

However, clinical studies have 

suggested that BRAF non-V600 mutations 

might be implicated in the resistance to anti-

EGFR MAb. In a retrospective study among 

36 patients with BRAF class II and III 

mutations, the median survival of patients was 

significantly higher than for patients with 

BRAF V600E (36.1 months vs 21 months), 

however, among 11 patients receiving anti-

EGFR therapy, no responses were observed, 

while 6 patients achieved stable disease as best 

response [72]. Similar results were obtained in 

another study, where among 4 CRC patients 

with non-V600 BRAF variants no one 

responded to cetuximab therapy [73]. Studies 

suggest that different non-V600 BRAF 

mutations might have a different effect on the 

efficacy of anti-EGFR MAb. In a study by 

Yaeger et al. [74] it has been suggested that 

response in CRCs with class II BRAF mutants 

is rare, while a large portion of CRCs with 

class III BRAF mutants might respond to 

therapy, based on the difference in objective 

response rate (ORR) in the two groups (8% vs 

50%).  

Differences in the effect of anti-EGFR 

MAbs on CRC with BRAF mutations of 

different classes may be attributed to 

differences in their biological properties. For 

instance, class III BRAF mutations are largely 

dependent on upstream EGFR signaling, and 

thus might be more sensitive to EGFR 

inhibition [71]. Additionally, non-V600 BRAF 

mutations in CRC are rare, and thus may be 

largely understudied.  

1.4 Other mutations in MAPK 

pathway genes. Mutations in genes other than 

RAS/BRAF in the MAPK pathway may also be 

associated with resistance to anti-EGFR 

MAbs in CRC.  

For example, gain of function mutations 

of MAP2K1 (encoding for MEK1) have been 

suggested as one of potential drivers of 

primary resistance but are not recommended 

for routine assessment due to insufficient 

validation in clinical trials [75]. MAP2K1 

mutations, especially p.Lys57, were found in 

CRC patients with shorter PFS [76, 77] and 

were also recently found to be implicated in 

acquired resistance to anti-EGFR agents [39, 

75, 78]. 

NF1, another gene involved in the 

MAPK pathway, encodes for a negative 

regulator of KRAS and plays a negative 

regulatory role in signaling downstream of 

EGFR due to its function as a RAS GTPase 

activating protein [79, 80]. It was 

demonstrated that NF1 loss might be one of 

the potential mechanisms of acquired 

resistance to EGFR inhibitors in CRC [76, 81, 

82]. NF1 inactivation has also been associated 

with decreased sensitivity of human lung 

cancer cells to EGFR inhibitors, which can be 

attributed to enhanced RAS signaling [83].  

GTPase RAC1 and its alternatively 

spliced isoform RAC1B, important 

components of the pathobiology of various 

tumor progression processes, were shown to 

be involved in anti-EGFR MAb resistance 

using CRC cell lines [84], as well as surgical 

specimen from head and neck squamous cell 

carcinoma (HNSCC) patients [85].  

Mutations in ARID1A, the most 

frequently mutated subunit of the SWI/SNF 

chromatin remodeling complex in cancer, 

have been reported to be associated with a 

transcriptional signature predicting reduced 

efficacy of anti-EGFR MAbs. This effect can 

be partially attributed to the activation of 

PI3K/MAPK signaling and loss of SWI/SNF 

activity [86]. However, further studies are 

warranted to confirm these findings. 

2. PI3K pathway-mediated resistance. 

The PI3K/AKT/mTOR (PI3K) pathway is the 

second most commonly upregulated 

intracellular signaling pathway in CRC. In 

CRC, the oncogenic activation of the PI3K 

pathway frequently occurs through gain of 
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function mutations of PIK3CA, as well as loss 

of function mutations, deletions or loss of 

expression of PTEN – all common events in 

CRC [87]. For instance, PIK3CA exon 

20/PTEN/AKT1 alterations were found in 

10.9% of older patients receiving 

panitumumab plus FOLFOX or 5-FU/LV 

[88]. The PI3K pathway is an important 

signaling pathway downstream of EGFR, 

exhibiting crosstalk with other signaling 

pathways, including MAPK [89, 90]. It has 

been proposed that the oncogenic activation of 

the PI3K pathway might play a role in 

generating resistance to EGFR-targeting 

therapies in CRC due to the activation of 

signaling downstream of EGFR [89, 91]. 

However, since dysregulation of the PI3K 

pathway often coexists with RAS/BRAF 

mutations, the individual roles of PI3K 

alterations in terms of anti-EGFR resistance 

warrants further investigation [87].  

2.1 PIK3CA. Oncogenic mutations in 

PIK3CA occur in RAS-mutant and in RAS-wt 

CRC, suggesting that they might possess both 

driver and passenger roles depending on the 

molecular context [92, 93]. PIK3CA is altered 

in up to 20% of CRCs [87, 92] (Fig.2). In over 

1.5% of tumors, double-hit mutations are 

observed, which are associated with increased 

PI3Kα signaling [94]. Activating mutations 

are predominantly located in exons 9 and 20 

of the gene, affecting kinase and helical 

domains. However, recent studies suggest that 

less common activating mutations can occur in 

other exons of the gene [95, 96, 97]. 

Although molecular testing is routinely 

performed for patients with CRC, the data on 

the activity of anti-EGFR MAbs against 

PIK3CA-mutated tumors is limited. Although 

responses can be observed occasionally, 

PIK3CA mutations are generally associated 

with resistance to anti-EGFR MAbs, as shown 

by lower PFS and OS rates across patients 

with PIK3CA mutations [25, 91, 98, 99]. This 

effect appears to be especially pronounced in 

patients with exon 20 PIK3CA mutations, 

whereas exon 9 mutations do not seem to be 

predictive of response to anti-EGFR therapy 

[91, 99, 100]. This difference can be attributed 

to the domain-specific nature of activating 

properties of various PIK3CA mutations 

[101]. However, some studies report no effect 

of PIK3CA mutations on OS in RAS wt tumors 

[98, 102]. Although potentially significant, 

these findings should be interpreted with 

caution, since no randomized controlled trials 

have been carried out.  

2.2 PTEN. When compared to PIK3CA, 

PTEN is less frequently altered in CRC (~5-

7%) [87]. PTEN is a negative regulator of the 

PI3K pathway, and its loss or loss of function 

leads to aberrant PI3K signaling [103]. PTEN 

loss of function (LoF) mutations, as well as 

loss of protein expression due to promoter 

hypermethylation are associated with features 

of the sessile-serrated pathway [104, 105]. 

PTEN mutations/loss of expression have been 

associated with reduced response rates to 

cetuximab [106, 107]. Lack of response to 

panitumumab has also been reported across 

patients with PTEN loss or LoF mutations 

[107]. Additionally, reduced PTEN copy 

number has also been implicated in resistance 

[106, 107]. However, the number of studies 

that investigated the individual effect of PTEN 

alterations is small, warranting further 

validation.  

2.3 Other components of the PI3K 

pathway. Although mutations affecting 

PIK3CA or PTEN are the most common in 

CRC, impact of alterations in other genes 

encoding for the components of the 

PI3K/Akt/mTOR pathway has been reported. 

PIK3R1 encodes the p85α subunit of PI3K and 

acts as a regulator of the p110α catalytic 

product of the PIK3CA locus. Additionally, it 

has been proposed that PIK3R1, together with 

PIK3R2, is involved in the regulation of PTEN 

protein stability [108, 109]. Interestingly, 

PIK3R1 tends to be altered in RAS/BRAF wt 

tumors, albeit at low frequency [76]. In vitro 

studies have identified decrease of PIK3R1 

expression as a potential mechanism of anti-

EGFR resistance [110]. 

Point mutations in AKT1 occur at lower 

rates as compared to PIK3CA/PTEN 

alterations in CRC [86]. AKT1 oncogenic 

mutations, primarily E17K, had been identified 

in CRC patients initially resistant to anti-

EGFR treatment [111, 112]. Additionally, 
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AKT1 mutations are associated with 

concurrent RAS/BRAF mutations [111]. 

The impact of FBXW7 alterations on the 

resistance to anti-EGFR MAbs remains 

controversial. The F-box protein FBXW7 is 

also implicated in the PI3K signaling [113]. 

Alterations of FBXW7 have been identified in 

CRC patients displaying short PFS and lack of 

response to anti-EGFR treatment, however the 

small sample size and the retrospective nature 

of data do not allow to draw univocal 

conclusions [76, 114, 115].  

Combinations of anti-EGFR MAbs with 

various targeted agents, such as mTOR 

inhibitors, have also resulted in high efficacy, 

warranting further validation in larger patient 

cohorts [116, 117, 118]. However, clinical 

evaluation of an experimental PI3K inhibitor 

combined with cetuximab for KRAS wt CRC 

patients unselected for the alterations of 

PI3K/Akt/mTOR pathway, had limited 

activity [119].  

3. RTK. Mutations in receptor tyrosine 

kinases (RTK) lead to the 

autophosphorylation of the tyrosine kinase 

domain resulting in conformation changes and 

activation of downstream signaling pathways. 

Alterations of different RTKs can be found in 

CRC, the majority of which have the potential 

to activate PI3K and MAPK signaling [120], 

highlighting that the oncogene addiction can 

be a driver of anti-EGFR therapy resistance.  

3.1 HER/ERBB family. Amplifications 

of ERBB2 occur in up to 3% of tumors, and 

outline a distinct patient population [87]. 

RAS/BRAF/PIK3CA quadruple wild-type 

tumors are especially enriched for ERBB2 

amplifications, which are observed in up to 

20-30% of cases [121]. ERBB2 amplifications 

have long been recognized as a mechanism of 

primary resistance to anti-EGFR mAbs, as 

they have been shown to be associated with 

worse PFS and ORR in various studies [122, 

123]. However, the question of what threshold 

of ERBB2 amplification should be taken into 

account when considering EGFR MAb 

requires further studies [124].  

In a similar manner to ERBB2 

amplifications, ERBB2 mutations result in 

downstream pathway activation, and thus 

have the potential to mediate resistance to 

EGFR-targeting agents [125]. Consistently, 

various studies have validated the association 

between ERBB2 mutations, particularly the 

ones occurring in the tyrosine kinase of the 

protein, and resistance to EGFR inhibitors. 

Interestingly, ERBB2 mutations can be 

attributed to both primary and acquired 

resistance [126]. In the era of NGS, these 

findings have become more relevant than ever 

before due to the potential of NGS to identify 

not only ERBB2 amplifications, but also 

mutations.  

Preclinical studies suggest that ERBB3 

mutations may also influence the effectiveness 

of EGFR MAb in CRC, as well as in HNSCC. 

This effect can be explained by the activation 

of the PI3K pathway caused by ERBB3 

oncogenic mutations [127]. However, in a 

retrospective study by Loree et al. ERBB3 

mutations exhibited a less pronounced effect 

on the effects of EGFR MAb treatment when 

compared to ERBB2 mutations [128]. 

For cancers with sustained ERBB 

signaling, the addition of ERBB TKIs has 

been investigated, resulting in promising 

antitumor activity [129, 130, 131]. Despite the 

promising activity of other agents, when 

combined with cetuximab or panitumumab, 

pan-ERBB TKI neratinib failed to produce 

any objective responses among patients with 

RAS/BRAF/PIK3CA wt CRC [132].  

3.2 EGFR ECD mutations. In some 

cases, acquired resistance to anti-EGFR MAbs 

can be mediated by the emergence of EGFR 

ectodomain (ECD) point mutations [133]. 

EGFR ECD mutations may arise in up to 16% 

of patients treated with EGFR MAbs [133]. 

Several EGFR ECD mutations have been 

reported, including, among others, R451C, 

S492R, G465R, K467T [134-138]. Contrary 

to activating mutations of the EGFR, most of 

the EGFR ECD mutations lie in the surface 

recognized by EGFR MAbs and have the 

potential to affect complex formation. Some 

mutations (i.e. R451C) that are not specifically 

located in EGFR MAb binding sites introduce 

other critical structural changes [134]. 

Importantly, a subset of these mutations (such 

as S492R) may only affect the interaction with 
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cetuximab and not panitumumab [133, 134], 

which may be attributed to the presence of a 

large central cavity in panitumumab but not 

cetuximab [139]. 

Switching from cetuximab to 

panitumumab has been reported to be an 

effective strategy for treating cetuximab-

resistant CRC patients with acquired EGFR 

ECD mutations, as a significant subset of these 

mutations does not prevent panitumumab 

binding [134]. Moreover, Sym004, a 1:1 

mixture of cetuximab and panitumumab has 

been shown to be an effective treatment 

strategy for EGFR ECD-mutated CRC in vitro 

[140]. Therefore, for CRC patients with EGFR 

ECD mutations no additional agents might be 

needed apart from standard EGFR MAb.  

3.3 MET amplification. Alterations of 

the MET are a well-established mechanism of 

resistance to EGFR tyrosine kinase inhibitors 

(TKIs) in non-small cell lung cancer (NSCLC) 

[141, 142]. Similarly to NSCLC, MET 

amplifications, albeit occurring at lower 

frequencies (around 1%), have been found to 

drive resistance to anti-EGFR mAb in CRC. 

Using patient-derived tumor xenografts, 

Badrelli et al. showed that MET amplification 

might be associated both with primary and 

acquired resistance in KRAS wt CRC, which 

was then supported by patient cases [143]. 

This effect can be attributed by the activation 

of the downstream PI3K and MAPK induced 

by MET [144].  

In MET-amplified CRC, a combination 

of MET and EGFR targeting agents have 

resulted in the improvement of patients’ 

outcomes, although the data on the 

combination of these drugs are limited [145]. 

3.4 Kinase fusions. Kinase fusions are 

rare in CRC, occurring in less than 1% of the 

patients [87, 146]. However, kinase gene 

fusions are estimated to be enriched in 

RAS/BRAF wt tumors in patients that will be 

potentially treated with EGFR MAbs [147], or 

mismatch repair deficient/microsatellite 

unstable (dMMR/MSI) tumors [148, 149]. 

Specifically, ALK, BRAF, NTRK, RET gene 

fusions have been reported in patients with 

CRC [88, 112, 147, 150]. Kinase gene fusions 

have been identified in EGFR MAb treatment 

resistant CRC patients [112], however, their 

effect has been underexplored in large 

randomized studies due to low prevalence. 

Additionally, kinase fusions have been found 

to be enriched in dMMR/MSI colorectal 

cancer, which can further explain resistance 

[151]. 

3.6 Other. Other uncommon RTK-

mediated mechanisms of resistance have been 

suggested. For instance, although rare in CRC, 

in vitro studies have identified FGFR1 

amplifications as mediating resistance to anti-

EGFR mAbs, possibly due to the activation of 

compensatory pathways, however, these 

findings have not been further investigated to 

date [143]. 

Upon binding with growth factors and 

insulin, the insulin-like growth factor 1 

receptor (IGF1R) activates the two most 

commonly upregulated signaling pathways in 

CRC, the PI3K and MAPK [152]. Elevated 

expression of IGF1R has been found to be a 

poor prognostic factor in CRC [153]. Low 

IGF1R expression has been found to correlate 

with better outcomes with cetuximab 

treatment [154]. However, the data regarding 

the effect of IGF1R expression on the efficacy 

of EGFR-targeting therapy is inconsistent 

[154, 155]. 

Persistent activation of the JAK/STAT 

pathway has also been linked to anti-EGFR 

therapy. Specifically, activation of STAT3 

through phosphorylation correlated with the 

resistance to EGFR TKI gefitinib in CRC cell 

lines, suggesting that STAT3 phosphorylation 

may play a role in mediating resistance to 

EGFR inhibitors in CRC [156]. 

VEGF and EGFR signaling pathways 

are closely related, sharing multiple 

downstream effectors. VEGF signaling plays 

a crucial role in angiogenesis, and inhibition 

of angiogenesis is one of the mechanisms of 

action of anti-EGFR MAb. Increased 

expression of VEGF has been reported to be 

associated with decreased response to 

cetuximab [157]. Dual targeting of VEGF and 

EGFR represents a promising strategy for 

overcoming resistance mediated by either 

VEGF, or VEGF/EGFR crosstalk [158, 159]. 
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5. Wnt signaling and epithelial-to-

mesenchymal transition. The Wnt pathway 

is commonly divided into β-catenin 

dependent, or canonical, and independent, or 

non-canonical, signaling pathways [160]. The 

canonical Wnt signaling pathway plays one of 

the most important roles in CRC 

carcinogenesis [161]. Wnt activation in CRC 

occurs through inactivation of APC 

approximately in 50% of cases, or through 

mutation of β-catenin [160]. Wnt signaling 

pathway promotes the nuclear accumulation 

of β-catenin, which contributes to epithelial-

mesenchymal transition (EMT) and increased 

tumor aggressiveness [162]. In CRC cell 

cultures, it was shown that the expression of 

E-cadherin, a marker of epithelial cells, may 

be associated with the effectiveness of EGFR 

inhibition. At the same time, mesenchymal 

cells were 7 times less sensitive to anti-EGFR 

MAbs when compared to epithelial cells 

[163]. These findings were also validated in 

other tumor types. For instance, in treatment-

naive patients with HNSCC who received 

cetuximab before surgery, upregulation of 

expression of genes implicated in CAF and 

EMT including markers of embryologic 

pathways like NOTCH and Wnt was 

demonstrated [164]. There is also supporting 

preclinical data for other cancer types besides 

CRC [165-168]. 

While some studies suggest that APC 

mutations might contribute to anti-EGFR 

MAb resistance, the data is inconsistent. For 

instance, Thota et al. reported that APC 

mutations in the context of TP53 mutations 

may, in fact, predict cetuximab sensitivity 

[169].  

6. TP53. Alterations in TP53, 

commonly referred to as ‘guardian of the 

genome’ can be found in the vast majority of 

CRC cases (>70%) [87]. Several studies have 

reported that TP53 wild-type or TP53-

expressing CRC tumors exhibit worse 

outcomes when treated with anti-EGFR MAbs 

when compared to TP53-mutant tumors, 

however other factors, such as tumor 

sidedness, might contribute to this effect [170-

173]. In vitro studies suggest that EGFR 

expression can be differently modulated 

depending on the TP53 mutational status, and 

TP53-mutant status is generally associated 

with increased EGFR expression, which can 

explain the differences in anti-EGFR MAb 

sensitivity  

[174, 175].  

7. TGF-β pathway. The transforming 

growth factor (TGF)-β signaling pathway is 

involved in many biologic cellular processes 

such as cell proliferation, differentiation, 

apoptosis, and extracellular matrix production 

[176]. In the early CRC carcinogenesis, 

activation of TGF-β leads to tumor 

suppression [177]. However, in advanced 

stages, TGF-β is believed to promote 

metastasis, angiogenesis, and EMT [178, 

179]. 

SMAD4 is a common mediator in the 

transcriptional regulator complex in the TGF-

β pathway [180]. It has been demonstrated that 

SMAD4 mutations can lead to cetuximab 

resistance in CRC patients. The modified PFS 

(mPFS) and ORR to cetuximab has been 

reported to be decreased for SMAD4-mutated 

patients when compared to SMAD4 wt patients 

[81, 115]. Similar results have also been 

shown in other studies [181] and for other 

tumor types, specifically for HNSCC [182, 

183]. 

8. Non-genomic mechanisms of 

resistance. Various other non-genomic 

mechanisms driving EGFR MAb resistance 

have been proposed. For instance, dMMR, 

caused by a dysfunction of mismatch repair 

and occurring in up to 15% of CRC patients, 

has been reported to play an important role in 

mediating resistance [184]. Although the 

mechanism underlying resistance in 

dMMR/MSI CRC cases remains largely 

unknown, it has been shown that in cases 

where dMMR/MSI is caused by the 

hypermethylation of MLH1 promoter 

(commonly referred to as sporadic 

dMMR/MSI) increase in the expression of 

ERBB2, as well as PI3K signaling can be 

observed [185]. However, in this case, the 

increase in the ERBB2 expression might not 

be clinically significant, as ERBB2 

amplification-positivity and MSI are mutually 

exclusive in CRC [186]. Additionally, 
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sporadic dMMR/MSI is commonly associated 

with BRAF V600E mutations, whereas 

mutations in other oncogenes known to drive 

resistance to anti-EGFR MAb are frequently 

found in Lynch syndrome-associated CRC 

[187].  

Apart from dMMR/MSI, the immune 

microenvironment by itself can be considered 

as an important modulator of anti-EGFR MAb 

efficacy. Specifically, increase in cancer-

associated fibroblasts (CAFs), which produce 

mitogenic growth factors such as FGF1, 

FGF2, HGF, TGF-β and others, as well as 

angiogenesis and abnormal functioning of 

various immune cells have been demonstrated 

to modulate resistance [82].  

Additionally, metabolic 

reprogramming, which can occur following 

treatment with EGFR-targeting agents, can 

influence therapy efficacy [188]. Autophagy, 

a self-cannibalization biological process, is 

another factor that should be considered when 

discussing mechanisms of resistance to 

EGFR-targeting agents. It has also been 

proposed that autophagy acts as a protective 

response in cancer cells [189]. Finally, cancer 

stem cells, also known as tumor-initiating 

cells, have also been suggested to play a part 

in drug resistance, due to their ability to self-

renew and differentiate into various cell 

lineages [190].  

Furthermore, gut microbiota 

composition has been found to modulate 

therapy efficacy in various tumors, including 

CRC. However, data regarding the effect of 

gut microbiota on the efficacy of anti-EGFR 

MAbs is currently limited. A small study by 

Lewandowski et al. [191] found that patients 

with high diversity of gut microbiome may be 

better candidates for anti-EGFR MAb therapy, 

as compared to patients with non-diverse 

microbiome. However, these findings should 

be further validated, as diverse gut 

microbiomes have been linked to a good 

prognosis of CRC patients regardless of 

therapy [192].  

Finally, non-coding RNAs (ncRNAs), 

including microRNAs, long non-coding 

RNAs, and circular RNAs have been reported 

to regulate resistance to anti-EGFR MAb in 

CRC. One of the suggested mechanisms 

explaining this phenomenon is that different 

ncRNAs can upregulate oncogenic signaling 

pathways promoting resistance to anti-EGFR 

therapy [193]. 

Discussion and conclusions. 

Monoclonal antibodies that target EGFR 

blocking downstream signaling have emerged 

as important therapeutic agents in the 

treatment of CRC. The indication of drugs 

from this class, cetuximab and panitumumab, 

is currently based on the mutational statuses of 

KRAS, NRAS and BRAF genes [9, 10]. Until 

recently, the question of whether additional 

factors play a role in resistance to anti-EGFR 

MAb has not been widely investigated. 

However, the encouraging results of trials 

evaluating the role of the hyperselection have 

reopened the question of the optimal selection 

of CRC patients for the anti-EGFR MAbs 

once again [11, 12].  

Here, we outline current knowledge on 

the mechanisms of resistance to anti-EGFR 

MAbs beyond traditional alterations in CRC. 

Specifically, we focus on the alterations of 

various genes involved in relevant signaling 

pathways downstream of EGFR that can be 

detected by genomic assays currently used in 

the real-world clinical practice. Despite the 

fact that some of the discussed biomarkers 

have been extensively studied, their individual 

use in the clinic is limited by the lack of 

randomized clinical studies. Therefore, it will be 

necessary to validate the clinical utility of these 

alterations in large cohort studies for optimal 

patient management. Future efforts should be 

directed at optimizing strategies to overcome 

resistance to anti-EGFR MAbs in patients with 

various genomic alterations. The most common 

mechanisms of intrinsic and acquired resistance 

are summarized in Figure 3. 
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Fig. 3. The landscape of biomarkers validated in retrospective/prospective trials of primary (A)  

and acquired (B) resistance to anti-EGFR monoclonal antibodies.  

Abbreviations: ampl – amplification, mut – mutation 

Many attempts have been made towards 

the development of strategies to overcome 

resistance to anti-EGFR MAb in CRC [194]. 

Combining anti-EGFR MAbs with targeted 

agents represents a promising strategy for 

overcoming treatment resistance arising from 

compensatory pathway activation, although 

further studies are warranted to improve 

patient outcomes. Additionally, novel agents 

may be used as standalone therapies for 

patients with various alterations, such as 

aberrant Wnt/β-catenin signaling, for instance 

[195, 196]. 

Apart from genetically-driven 

resistance, growing evidence suggests that 

various non-genetic mechanisms might be 

implicated in the resistance to anti-EGFR 

MAbs in CRC. Although currently these 

findings are mostly of academic interest, with 

the advances of novel assays, it will be 

possible to incorporate their analysis into 

routine clinical practice. 

In current clinical practice, tumor 

sidedness plays a crucial role in clinical 

decision making, which is largely driven by 

differences in their biology. For instance, 

right-sided tumors are more likely to have 

MSI, as well as display higher rates of 

oncogenic EGFR activation, BRAF and 

PIK3CA mutations, which factor into therapy 

resistance [197]. However, further efforts 

should be directed towards the 

implementation of comprehensive genomic 

testing into routine clinical practice, which 

will allow to focus on genomic portraits of 

tumors, and not only their sidedness. 

In conclusion, while many mechanisms 

affecting various signaling pathways beyond 

the traditional RAS/BRAF mutations are 

thought to be implicated in the resistance to 

anti-EGFR therapy in colorectal cancer, future 

efforts are needed to clarify their significance. 

Ongoing sequencing efforts will clarify the 

need for expanding the list of alterations 

routinely tested for the selection of candidates 

for anti-EGFR therapy. 
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