COMPARATIVE ANALYSIS OF POPULAR FACIAL RECOGNITION TECHNIQUES IN THE IMAGES
In the operation of informatization objects, the necessary condition for their functioning is the presence of an authentication subsystem. The application of multimodal authentication systems on informatization objects is accompanied by the use of facial recognition methods on the image. The variety of current facial recognition techniques in an image requires the selection of the most accurate facial recognition technique. The most popular facial recognition algorithms are the flexible comparison method on graphs, the principal component method, the Viola-Jones method, the reference vector method, and the face image barcode method. Facial recognition is influenced by a number of factors, such as facial dynamics, brightness change, noise and facial rotation, and facial ageing. These factors are due to the inability to ensure stable shooting conditions. Therefore, it is necessary to compare these facial recognition methods in view of their ability to perform their task effectively under these conditions.
While nobody left any comments to this publication.
You can be first.
1. Кузнецов Д.А. Применение многомодальной аутентификации на объектах критической информационной инфраструктуры / Кузнецов Д.А., Дамм В.А., Кузнецов А.В., Басов О.О. // Научный результат. Информационные технологии. 2019. Том 4. Вып. 3. С. 48-55.
2. Никитин В.В. Модель и методика многомодальной аутентификации пользователя автоматизированной системы: Автореф… дис. канд. техн. наук. – Воронеж 2018. – 18 с.
3. Кузнецов Д.А. Классификация методов обнаружения и распознавания лица на изображении / Кузнецов Д.А., Никольский П.Г., Рачков Д.С., Кузнецов А.В., Хахамов А.П. // Научный результат. Информационные технологии. Т.4, №1, 2019.
4. Кахит Г. Разработка системы распознавания лиц / Кахит Г. Абдулкадир Е. [Электронный ресурс] ResearchGate. URL: // https://www.researchgate.net/publication/262875649_Design_of_a_Face_Recognition_System (дата обращения: 5.12.2019).
5. Васильева Е.В. Анализ современных подходов к узнаванию и распознаванию лиц // Васильева Е.В., Шестаков М.И., Лихачевский Д.В. // 54-я научная конференция аспирантов, магистрантов и студентов БГУИР. 2018.
6. Померанцев А. Метод главных компонент / Померанцев А. // Российское хемометрическое общество. [Электронный ресурс]. - Режим доступа: http://rcs.chemometrics.ru/Tutorials/pca (дата обращения: 5.12.2019).
7. Усилин С.А. Алгоритмическое развитие Виола-Джонсовских детекторов для решения прикладных задач распознавания изображений: Автореф… дис. канд. техн. наук. – Москва 2017. – 149 с.
8. Амосов О.С. Модифицированный алгоритм детекции лиц в видеопотоке и его программная реализация / Амосов О.С., Иванов Ю.С. // Науковедение. 2014. Вып. 3. С. 26.
9. Кухарев Г.А. Формирование штрих-кода по изображениям лиц на основе градиентов яркости / Кухарев Г.А., Матвеев Ю.Н., Щеголева Н.Л. // Научно-технических вестник информационных технологий, механики и оптики. 2014. Вып. 3. С. 91.
10. Буй Тхи Тху Чанг, Фан Нгок Хоанг., Спицин В.Г. Распознавание лиц на основе применения метода Виолы-Джонса, вейвлет-преобразования и метода главных компонент / Буй Тхи Тху Чанг, Фан Нгок Хоанг, Спицин В.Г. // Известия Томского политехнического университета. 2012. Т. 320 № 5.
11. Лоренс В. Распознавания лиц с помощью метода гибкого сравнения на графах / Лоренс В., Джин-Марк Ф., Норберт К., Кристоф М. // [Электронный ресурс] ResearchGate. URL: https://www.researchgate.net/publication/319877813_Face_Recognition_by_Elastic_Bunch_Graph_Matching (дата обращение 5.12.2019).
12. Левчук С.А. Исследование характеристик алгоритмов распознавания лиц / Левчук С.А., Якименко А.А. // Сборник научных трудов НГТУ. 2018. № 3-4. С. 40-58.
13. Синх А. Распознавание лиц с помощью метода главных компонент и характерных точек лица / Синх А., Кумар С. // Информатика и инженерия. Национальный технологический институт Роуркела. 2012.
14. Хейсел Б. Распознавание лиц с помощью метода опорных векторов: глобальный подход против основанного на компонентах / Хейсел Б., Пурди Х., Томасо П. // [Электронный ресурс] ResearchGate. URL: https://www.researchgate.net/publication/2853265_Face_Recognition_with_Support_Vector_Machines_Global_ve rsus_Component-based_Approach (дата обращение 5.12.2019).
15. Омар Ф. Распознавание лиц с помощью PCA и SVM / Омар Ф., Хасан А. // [Электронный ресурс] ResearchGate. URL: https://www.researchgate.net/publication/224599198_Face_recognition_using_PCA_and_SVM (дата обращение 5.12.2019).
16. Гончаров А.В. Влияние освещенности на качество распознавания фронтальных лиц / Гончаров А.В., Каркищенко А.Н. // Известия ЮФУ. Технические науки. 2008.
17. Мокеев А.В. Об эффективности распознавании лиц с помощью линейного дискриминантного анализа и метода главных компонент / Мокеев А.В. Мокеев В.В. // Бизнес-информатика. 2015. № 3(33). С. 44-54.
18. Шмаглит Л.А. Разработка и анализ алгоритмов распознавания лиц на телевизионных изображениях для биометрической идентификации / Шмаглит Л.А. // Автореферат дис. кан. тех. наук. Ярославль. 2014. С. 119.
19. Спицын В.Г. Распознавание лиц на основе метода главных компонент с применением вейвлетдескрипторов Хаара и Добеши / Спицын В.Г., Болотова Ю.А., Шабалдина Н.В., Буй Тхи Тху Чанг, Фан Нгок Хоанг // Национальный исследовательский ядерный университет «МИФИ». 2016. № 5. C. 103-112.
20. Peter N. Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection / Peter N., Joao P., David J. // IEEE transactions on pattern analysis and machine intelligence. Vol. 19, no. 7. 1997.
21. Анализ существующих подходов к распознаванию лиц // [Электронный ресурс] URL: https://habr.com/ru/company/synesis/blog/238129/
22. Татаренков Д. А. Анализ методов обнаружения лиц на изображении // Молодой ученый. – 2015. – №4. – С. 270-276.