ABOUT BLOOD FORMED ELEMENTS DETECTION BASED ON MEDICAL IMAGES
This article is about implementing a hematological analysis through computer vision algorithms. This type of analysis is one of the basic analyses providing huge amount information about patient and his state. We propose a pipeline with a few steps for image preprocessing thus image become more contrast and noiseless. At first image color space converting – so we separate a luminance channel and ignore other channels (due to source image features). Then we blur image with Gaussian filter and apple CLAHE filter for contrast improvement, so background pixels form more homogenous areas and become less bright in comparison to cell’s pixels. The next step is background removal and image binarization based on Otsu algorithm for border pixel luminance level detection. Afterwards we extract an array of contours from binary image and use this array as an input source for Watersched algorithm. As a result, we have a color image where every single class of object has its own color and an array of object. This array then used as a source for cells diameters distribution histogram – a Price-Jones curve. All described steps implemented in Python 2.7 with OpenCV and Seaborn libraries.
While nobody left any comments to this publication.
You can be first.
1. Batishchev D.S., Mikhelev V.M. Infrastruktura vysokoproizvoditel'noy komp'yuternoy sistemy dlya realizatsii oblachnykh servisov khraneniya i analiza dannykh personal'noy meditsiny // Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Ekonomika. Informatika. - Belgorod: Izd-vo NIU BelGU, 2016. - S. 88-92.
2. Belyakov V.K., Sukhenko E.P., Zakharov A.V., Kol'tsov P.P., Kotovich N.V., Kravchenko A.A., Kutsaev A.S., Osipov A.S., Kuznetsov A.B. Ob odnoy metodike klassifikatsii kletok krovi i ee programmnoy realizatsii // Programmnye produkty i sistemy. – 2014. -№ 4 (108). – S. 46-56.
3. Borisovskiy S.A. Gibridnye modeli i algoritmy dlya analiza slozhnostrukturirovannykh izobrazheniy v intellektual'nykh sistemakh meditsinskogo naznacheniya: dis. kand. t.n. nauk: 05.13.01. – Kursk, 2012.
4. Gribkov I.V., Zakharov A.V., Kol'tsov P.P., Kotovich N.V., Kravchenko A.A., Kutsaev A.S., Osipov A.S. Sravnitel'noe issledovanie metodov analiza izobrazheniy // - M.: Izd-vo NIISI RAN, 2005.
5. Metodicheskoe rukovodstvo: Obshchiy analiz krovi (traktovka rezul'tatov issledovaniy, vypolnennykh na gematologicheskikh analizatorakh) // Stavropol'skiy gosudarstvennyy meditsinskiy universitet URL: stgmu.ru/userfiles/depts/clinical_lab_diagnosis_pe/Obschij_analiz_krovi.rtf (Date Views: 1.04.2018).
6. Sistema krasnoy krovi / Lipunova E.A., Pod red. Skorkinoy M.Yu. - Belgorod: Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovaniya "Belgorodskiy gosudarstvennyy natsional'nyy issledovatel'skiy universitet". - 215 s.
7. Soynikova E.S., Ryabykh M.S., Batishchev D.S., Sinyuk V.G., Mikhelev V.M. Vysokoproizvoditel'nyy metod obnaruzheniya granits na meditsinskikh izobrazheniyakh // Nauchnyy rezul'tat. Informatsionnye tekhnologii. 2016. - S. 4-9.
8. Sokolinskiy B.Z., Dem'yanov V.L., Mednyy V.S., Parpara A.A., Pyatnitskiy A.M. Avtomaticheskaya sortirovka leykotsitov mazka krovi s ispol'zovaniem metodov obuchaemykh neyronnykh setey i watershed // V sb.: Metody mikroskopicheskogo analiza. M.: Meditsinskie komp'yuternye sistemy, 2009. S. 128-132
9. Sokolinskiy B.Z., Dem'yanov V.L., Mednyy V.S., Parpara A.A., Pyatnitskiy A.M. Avtomaticheskaya sortirovka leykotsitov mazka krovi s ispol'zovaniem metodov obuchaemykh neyronnykh setey i watershed // V
sb.: Metody mikroskopicheskogo analiza. M.: Meditsinskie komp'yuternye sistemy, 2009. S. 128–132.
10. Tomakova R.A., Filist S.A., Zhilin V.V., Borisovskiy S.A. Programmnoe obespechenie intellektual'noy sistemy klassifikatsii formennykh elementov krovi // Fundamental'nye issledovaniya. – 2013. – № 10-2. – S. 303-307
11. Bessman, J.D. and D.I. Feinstein, 1979. Quantitative Anisocytosis as a Discriminant Between Iron Deficiency and Thalassem. Blood, 53. Date Views 1.04.2018 www.bloodjournal.org/content/bloodjournal/53/2/288.full.pdf?sso-checked=true.
12. Beucher, S. and F. Meyer, 1992. Optical Engineering. New York: Marcel Dekker Incorporated, pp: 433-481.
13. Biggs, R. and R.L. MacMillan, 1948. The errors of some haematological methods as they are used in a routine laboratory. J Clin Pathol, 1. Date Views 1.04.2018 jcp.bmj.com/content/jclinpath/1/5/269.full.pdf.
14. Hawksley, J.C., R. Lightwood and U.M. Bailey, 1934. Iron-deficiency anaemia in children: Its association with gastro-intestinal disease, achlorhydria and haemorrhage. Archives of disease in childhood, 9. Date Views 1.04.2018 pdfs.semanticscholar.org/6a86/f416daf9c3d90217db7e25cb86273bb1be42.pdf.
15. Image Thresholding. Date Views 01.04.2018 docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html.
16. Jambhekar N. Red blood cells classification using image processing. Science Research, 2011, vol. 1, no. 3, pp. 151-154. Date Views 1.04.2018 studyres.com/doc/17754179/red-blood-cells-classification-using-image
17. Price-Jones, S. and M.B. Lond, 1910. The variation in the sizes of reb blood cells. British Medical Journal, 2. Date Views 1.04.2018 digitalcommons.ohsu.edu/cgi/viewcontent.cgi?article=1062&context=hca-cac, pp: 1418-1419.
18. Sasi, N.M. and V.K. Jayasree, 2013. Contrast Limited Adaptive Histogram Equalization for Qualitative Enhancement of M yocardial Perfusion Images. Engineering, 5. Date Views 1.04.2018 file.scirp.org/pdf/ENG_2013110109155688.pdf.
19. Satoshi, S. and A. Keiichi, 1985. Topological Structural Analysis of Digitized Binary Images by Border Following. Computer vision, graphics, and image processing, 30. Date Views 1.04.2018 download.xuebalib.com/xuebalib.com.17233.pdf.
20. Watershed approaches for color image segmentation. Date Views 1.04.2018 www.gipsa-lab.grenoble-inp.fr/~jocelyn.chanussot/publis/ieee_nsip_99_chanuss_watershed.pdf.