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Abstract
Mesenchymal stem (stromal) cells (MSCs) are self-renewing, cultured adult stem cells which secrete a complex set of 
multiple soluble biologically active molecules such as chemokines, and cytokines, cell adhesion molecules, lipid medi-
ators, interleukins (IL), growth factors (GFs), hormones, micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), 
messenger RNAs (mRNAs), exosomes, as well as microvesicles, the secretome. MSCs of various origin, including 
adipose-derived stem cells (ASCs), bone marrow derived mesenchymal stem cells (BM-MSCs), human uterine cervical 
stem cells (hUCESCs), may be good candidates for obtaining secretome-derived products. Different population of MSCs 
can secret different factors which could have anti-inflammatory, anti-apoptotic, anti-fibrotic activities, a neuroprotective 
effect, could improve bone, muscle, liver regeneration and wound healing. Therefore, the paracrine activity of condi-
tioned medium obtained when cultivating MSCs, due to a plethora of bioactive factors, was assumed to have the most 
prominent cell-free therapeutic impact and can serve as a better option in the field of regenerative medicine in future.
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Introduction

Mesenchymal stem (stromal) cells (MSCs) are self-rene-
wing, culture expandable adult stem cells that have been 
shown to be a promising candidate for cell-based thera-
py (Ferreira et al. 2018). Using mesenchymal stem cells 
for regenerative purposes is possible due to their trophic, 
paracrine, and immunomodulatory properties (Stagg 
and Galipeau 2013; Del Papa et al. 2015; Marfia et al. 

2015; Leavitt et al. 2016; Del Papa et al. 2019; Kuchar-
zewski et al. 2019; L et al. 2019; Lombardi et al. 2019). 
Besides, MSCs also have anti-tumorigenic, anti-fibrotic, 
anti-apoptotic, anti-inflammatory, pro-angiogenic, neuro-
protective, anti-bacterial and chemo-attractive effects 
(Maumus et al. 2013; Bartosh et al. 2016; L et al. 2019).

MSCs harvested from numerous anatomical locations, 
including the bone marrow, adipose tissue, Wharton’s jel-
ly of the umbilical cord, display similar immunopheno-
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typic profiles. However, there is a large body of evidence 
showing that, despite the similarity in their immunophe-
notypes, MSCs secrete a complex set of multiple soluble 
biologically active molecules, the secretome, composi-
tion of which varies significantly, depending on the age 
of the host and niches where the cells reside (Baksh et al. 
2004; Traktuev et al. 2008; Amos et al. 2010; Daquinag 
et al. 2011; Cheng et al. 2012; Daquinag et al. 2013; Ka-
pur and Katz 2013; Kyurkchiev et al. 2014; Madrigal et 
al. 2014; Dubey et al. 2018; Ferreira et al. 2018; L et al. 
2019; Lombardi et al. 2019; Meiliana et al. 2019). The 
MSCs secretome in general consists of such biologically 
active factors as chemokines and cytokines, cell adhesion 
molecules, lipid mediators, interleukins (ILs), growth 
factors (GFs), hormones, micro RNAs (miRNAs), long 
non-coding RNAs (lncRNAs), messenger RNAs (mR-
NAs), exosomes, as well as microvesicles (Kyurkchiev et 
al. 2014; Madrigal et al. 2014; Dubey et al. 2018; Ferreira 
et al. 2018; Lombardi et al. 2019; Meiliana et al. 2019). 
It is revealed that MSC secretion include in particular 
vascular endothelial growth factor (VEGF), insulin-like 
growth factor 1 (IGF-1), basic fibroblast growth factor 
(bFGF), transforming growth factor beta 1 (TGF-b1), 
nerve growth factor (NGF), placental growth factor 
(PGF), stromal-derived growth factor (SDF-1/CXCL12), 
monocyte chemo-attractant protein-1 (MCP-1/CCL2), 
IL-6, IL-8, IL-10 and IL-13 (Meiliana et al. 2019), bone 
morphogenetic proteins (BMP), CC chemokine ligand 5/
Regulated on activation, normal T cell expressed and se-
creted (CCL5/RANTES), epidermal growth factor (EGF), 
granulocyte colony-stimulating factor (G-CSF), granulo-
cyte-macrophage colony-stimulating factor (GM-CSF), 
hepatocyte growth factor (HGF), inter-cellular adhesion 
molecules (ICAM), indoleamine-2,3-dioxygenase (IDO), 
leukemia inhibitory factor (LIF), matrix metalloproteas-
es (MMP-1, MMP-2, MMP-3, MMP-7), platelet-de-
rived growth factor (PDGF), metalloproteinase inhibitors 
(TIMP-1, TIMP-2) (Polacek et al. 2011; Osugi et al. 2012; 
Inukai et al. 2013; Kyurkchiev et al. 2014; Pereira et al. 
2014; Ferreira et al. 2018; Linero and Chaparro 2014).

Herewith, mesenchymal stem cells of various origin, 
including bone-marrow-derived mesenchymal stem cells 
(BM-MSCs), adipose tissue-derived stem cells (ADSCs) 
or human uterine cervical stromal stem cells (hUCESCs), 
may be good candidates for obtaining products from se-
cretome (Zhao et al. 2013; Vizoso et al. 2017). However 
different populations of MSCs should be used for specific 
purposes because the composition of the secretome de-
pends on the stromal cells source. For instance, ADSCs 
have higher expression of mRNA, VEGF-D, IGF-1 and 
IL-8, while dermal-sheath- and dermal-papilla-derived 
cells secrete higher concentrations of CCL2 and leptin 
(Hsiao et al. 2012). It is known that placenta-derived 
MSCs are characterized with increased expression levels 
of HGF, bFGF, IL-6, IL-8, IL-1a and IL-1b, while in se-
cretome obtained from bone marrow-derived MSCs the 
levels of VEGF-A, NGF and angiogenin are higher (Du et 
al. 2016; Meiliana et al. 2019).

There is evidence that the molecules produced by 
MSCs (secretomes), especially those packaged in extra-
cellular vesicles (EVs), influence the tissue repair even 
better than the cells themselves (Lepperdinger et al. 2008; 
Madrigal et al. 2014; Dubey et al. 2018; Ferreira and 
Gomes 2018; Pelizzo et al. 2018; Campanella et al. 2019; 
Lombardi et al. 2019; Mitchell et al. 2019).

Therefore due to the paracrine activity, MSCs condi-
tioned medium (CM) or purified MSC-derived extracel-
lular vesicles having a plethora of bioactive factors are 
assumed to have the most prominent cell-free therapeutic 
impact and can serve as a better option in the field of re-
generative medicine in the future (Maguire 2013; Zhou 
et al. 2013; Vizoso et al. 2017; Park et al. 2018; L et al. 
2019; Lombardi et al. 2019).

This new frontier of research provides several key ad-
vantages over cell based applications: (a) the administra-
tion of proteins instead of whole cells as a new therapeu-
tic option in regenerative medicine; (b) CM can be stored 
without any toxic cryopreservatives, such as dimethyl 
sulfoxide (DMSO), for a relatively long period; (c) prepa-
ration of CM is more economical as it can be mass-pro-
duced from the available MSC populations under current 
good manufacturing practice (cGMP) conditions; (d) 
evaluation of CM for safety and efficacy will be much 
simpler and analogous to conventional pharmaceutical 
agents (Bermudez et al. 2015; L et al. 2019).

Anti-inflammatory activity

It is well known that there are anti-inflammatory factors 
in the MSCs secretome, including tumor necrosis factor 
β1 (TGFβ1) (Zagoura et al. 2012), interleukin 13 (IL13) 
(Bermudez et al. 2016), interleukin 18 binding protein 
(IL18BP), ciliary neurotrophic factor (CNTF), neurot-
rophin 3 (NT-3) factor, interleukin 10 (IL10), interleukin 
12 p70 (IL12p70), interleukin-25 (IL-25), which is also 
known as interleukin-17E (IL17E), interleukin 27 (IL27), 
or interleukin 1 receptor antagonist (IL1RA). On the other 
hand, pro-inflammatory cytokines are also present in 
MSCs conditioned medium, for example, IL1b, interleu-
kin 6 (IL6) (See et al. 2011; Cantinieaux et al. 2013), in-
terleukin 8 (IL8) (Mirabella et al. 2011), and interleukin 9 
(IL9) (Lee et al. 2011). Thus, the balance between the anti- 
and pro-inflammatory factors will determine the final ef-
fect of conditioned medium on the inflammatory process.

However, the numerous studies highlight MSCs an-
ti-inflammatory effect. Yi and Song (2012) described that 
MSCs inhibited proinflammatory cytokines, such as inter-
feron (IFN)-γ and tumour necrosis factor α (TNFα), while 
increasing release of anti-inflammatory IL10. Legaki et al. 
(2016) showed that hUCESC-CM treatment significantly 
reduced mRNA expression of pro-inflammatory cytokines 
(IL6, IL8, TNFα and macrophage inflammatory protein-1 
alpha (MIP-1α)), but increased mRNA expression of the 
anti-inflammatory cytokine (IL10). The similar results 
were obtained during experiments with MSC-CM from 
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amniotic fluid in a mice colitis model (Legaki et al. 2016). 
It was also found that hUCESC-CM reduced the infiltration 
of leucocytes in ocular tissues (Vishnubhatla et al. 2014).

Moreover, anti-inflammatory cytokines in MSC-CM 
can contribute to the beneficial effects seen in animal mod-
els of diabetes, acute colitis, inflammatory arthritis, etc. 
(Brini et al. 2017; Kay et al. 2017; Pouya et al. 2018). It 
was revealed that single intravenous injection of a condi-
tioned medium derived from adipose tissue (hAT-CM) into 
streptozotocin-(STZ)-treated diabetic mice relieved the di-
abetic neuropathic pain by re-establishing the Th1/Th2 bal-
ance with a long-lasting relief of sensory hypersensitivity. 
In the experiments with the STZ-treated diabetic mice, it 
was demonstrated that the content of anti-inflammatory and 
immunomodulatory cytokines (IL-1β, IL-6 and TNF-α) in 
dorsal root ganglia, sciatic nerves and spinal cord restored 
to basal levels after 1 week of hAT-CM injection. The el-
evated level of IL-10 also confirmed realization of an an-
ti-inflammatory mechanism (Brini et al. 2017). Pouya et al 
(2018) showed that an intraperitoneal injection of MSC-
CM in C57BL/6 mice with colitis mediated a significant 
decrease in colon inflammation and an increase in colon 
weight and length, which led to the disease activity index 
and mortality rate reducing. Furthermore, the mesenteric 
lymph nodes and spleen of the mice infused with MSC-CM 
demonstrated increased levels of the anti-inflammatory cy-
tokines IL-10 and TGF-β and reduced levels of the pro-in-
flammatory cytokine IL-17 confirming the anti-inflamma-
tory role of CM. Similarly, in the antigen-induced model of 
inflammatory arthritis, it was shown that an intra-articular 
injection of murine MSC-CM was effective in reducing 
disease severity and cartilage damage. The high levels of 
IL10 in CM were revealed, which correlated with an an-
ti-inflammatory response (Kay et al. 2017; L et al. 2019).

In order to study whether the anti-inflammatory poten-
tial of ADSC secretome is higher than EV-enriched fraction 
of ADSCs secretome, the effect of both fractions was inves-
tigated on the TNF-α-induced nuclear translocation of the 
NF-κB subunit p65 in U251 cells. It is interesting to note 
that the level of nuclear NF-κB p65 was significantly in-
creased by TNF-α treatment compared to control cells. The 
effect of the total secretome fraction on TNF-α stimulated 
cells was accompanied by a non-significant reduction of 
nuclear p65, whereas the influence of EV fraction led to a 
significantly reduced amount of p65 (Mitchell et al. 2019).

Anti-apoptotic activity

There are studies which illustrate that MSCs produce in-
hibitor proteins of apoptosis to restore local environment 
and prevent therefore cell death (Li et al. 2015). Tang et 
al. (2005) reported that MSCs decreased the pro-apoptotic 
factors expression (Bax and cleaved caspase-3) and stimu-
lated at the same time the anti-apoptotic compounds levels 
(Bcl-2). It is noteworthy that MSCs treatment of hearts 
led to elevated level of pro-angiogenic factors expression, 
including basic fibroblast growth factor (bFGF), vascular 

endothelial growth factor (VEGF), and stromal cell-de-
rived factor-1 (SDF-1), which is also called chemokine 
(C-X-C motif) ligand 12 (CXCL12) (Tang et al. 2005).

There are also studies revealing a pro-apoptotic effect of 
hUCESC-CM on malignant cells. In accordance with these 
data, the effects of MSCs on normal and cancer cells are dif-
ferent. Along with an antiapoptotic effect of hUCESC-CM 
on normal cells (Bermudez et al. 2016), the apoptosis oc-
curred in cancer cells under the influence of conditioned 
medium obtained from human uterine cervical stem cells 
in vitro and in vivo (Eiró et al. 2014; Vizoso et al. 2017).

Anti-fibrotic activity

An anti-fibrotic effect of stem cells conditioned medium 
is mediated by bioactive molecules in MSCs secretome 
which decrease accumulation of extracellular proteins 
and, therefore, lead to reduced scar formation. An et al. 
(2017) studied the influence of umbilical cord-derived 
mesenchymal cells (UCMSC) secretome on formation of 
fibrotic areas in mice with hepatic fibrosis. A decrease in 
the number of activated hepatic stellate cells (HSCs) ex-
pressing α- smooth muscle actin (α-SMA) was shown af-
ter an injection of the UCMSC-CM in the diseased mice, 
which was accompanied by reducing fibrotic areas. The 
researchers analysed the UCMSCs secretome using na-
no-chip-LC/QTOF-MS and discovered the presence of 
milk fat globule EGF factor 8 (MFGE8), an anti-fibrotic 
protein known to down-regulate the expression of TGF-
βR1 (transforming growth factor β type 1 receptor) at the 
mRNA and protein level, thereby decreasing the activati-
on of human hepatic stellate cells (An et al. 2017).

Paracrine effect of MSCs in bone 
regeneration

It was revealed that secretome synthesized by different 
stem cells, including rat bone marrow-derived MSCs 
(rBM-MSCs), human adult mesenchymal stem cells 
(haMSCs) and human fetal mesenchymal stem cells 
(hfMSCs), promoted osteogenic differentiation of 
rBM-MSCs. It is quite important that the human MSC 
conditioned medium effects in the same way as rat MSCs 
secretome, or even better. Xu et al. (2016) described that 
the hfMSCs secretome is characterised as a conditioned 
medium with the strongest osteogenic induction ability 
compared to the conditioned medium obtained when 
cultivating rBM-MSC or haMSC. It was also revealed 
that hfMSC conditioned medium does not induce any 
significant immune response, which makes it different 
from the haMSC secretome. At the same time, conditioned 
media at different concentrations did not affect rBM-
MSC viability or cell proliferation. Furthermore, hfMSCs 
secretome at the concentration of 100 μg/μl could enhance 
mineralization during rBM-MSC osteogenic induction 
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via increasing of alkaline phosphatase (ALP) activity and 
formation of calcium nodules.

The expression levels of osteogenic marker genes, 
including runt-related transcription factor 2 (Runx2), os-
teocalcin (OCN), osteopontin (OPN), and osterix (Osx), 
were significantly upregulated on Days 3 and 10 after the 
hfMSCs secretome treatment. ALP is responsible for os-
teoblastic differentiation at an early stage; it hydrolyses 
pyrophosphyte and generates inorganic phosphate which 
promotes the process of mineralization. Runx2 produces 
bone matrix proteins and is essential for osteoblast differ-
entiation. Growth and differentiation factors regulate ex-
pression levels of OPN and mediate bone formation and 
its remodeling. Osx acts downstream of Runx2, this fac-
tor takes part in the processes of osteoblast differentiation 
and bone tissue formation. It was shown that conditioned 
medium obtained from hfMSC stimulated differentiation 
of rBM-MSCs in osteogenic direction in vitro. Further-
more, application of the hfMSCs secretome locally into 
distraction osteogenesis gap in rats led to accelerated new 
bone formation and consolidation (Xu et al. 2016).

It is known that during the distraction osteogenesis pro-
cedure proliferation of bone progenitor cells increases and 
their recruitment to the target site occurs. The healing pro-
cess is accompanied by the angiogenesis and bone tissue 
formation/mineralization. At the same time, the mecha-
nisms of the hfMSCs conditioned media effect on bone tis-
sue regeneration, including vascular network formation and 
remodelling, remain unknown. There is evidence that the 
MSCs secretome mediates the release of vascular endothe-
lial growth factor (VEGF) at the site of tissue repair, being 
stimulated by hypoxia or normoxia. It is known that the ex-
pression of VEGF enhances bone tissue and blood vessels 
formation during distraction osteogenesis, and this biolog-
ical active factor is required for osteogenic differentiation.

Moreover, osteogenic lineage commitment of MSCs 
is accompanied by the Osx and OCN osteoprogenitors 
markers expression. Treatment of the damaged area with 
the hfMSCs secretome upregulates the number of Osx- 
and OCN-positive osteoprogenitors in the distraction 
zone in comparison with the control group. Different sig-
naling pathways may be involved in VEGF production 
following hfMSC conditioned medium influence, and 
further experiments are required to make the molecular 
mechanisms of these processes clear (Xu et al. 2016).

Neuroprotective effect and impact 
on neural/glial proliferation

There have been several studies in which adult stem cells, 
including mesenchymal stem cells, were used as a pos-
sible tool for central nervous system (CNS) regenerati-
on (Lindvall and Kokaia 2010; Shihabuddin and Aubert 
2010; Kan et al. 2011; Teixeira et al. 2014), which could 
be a promising therapeutic option (Pittenger et al. 1999; 
Zuk et al. 2002; Wang et al. 2004; Teixeira et al. 2014).

It was shown that the MSCs secretome mediated neu-
roprotective and neurotrophic effects (Caseiro et al. 2016; 
Luarte et al. 2016; Ratajczak et al. 2016) due to a number 
of neurotrophic factors (de Almeida et al. 2014; Mead et 
al. 2014). There are studies which demonstrate on nerve 
injury models that the MSC-based approach generated 
healing effects, including enhanced vascularization of 
the regenerating site, increased thickness of the myelin 
sheaths, modulation of the Wallerian degeneration stage, 
accelerated fibre regeneration, reduction of fibrotic scar-
ing, and improved fibre organization (Caseiro et al. 2016).

It was discovered on experimental animal models that 
stem cells obtained from bone marrow (BM-MSCs) and 
adipose tissue (ASCs) improved the healing process after 
stroke (Wei et al. 2009; Honmou et al. 2012; Teixeira et 
al. 2014), demyelination (Constantin et al. 2009; Cristo-
fanilli et al. 2011; Teixeira et al. 2014), Parkinson’s dis-
ease (Cova et al. 2010; Erba et al. 2010), and spinal cord 
injury (Arboleda et al. 2011; Park et al. 2012). To restore 
the central nervous system (CNS), the stem/progenitor 
cells from different sources could be used. For example, 
stem cells present in the Warton jelly of the umbilical 
cord, known as Wharton jelly stem cells (WJ-MSCs) and 
human umbilical cord perivascular cells (HUCPVCs), 
have a great potential in healing CNS injuries (Salgado 
et al. 2010; Datta et al. 2011; Taghizadeh et al. 2011). 
Populations of WJ-MSCs and HUCPVCs are also iden-
tified as mesenchymal stem cells (Sarugaser et al. 2005; 
Weiss and Troyer 2006; Baksh et al. 2007; Sarugaser et 
al. 2009). The major effects of MSCs are supposed to 
be determined by their secretomes (Salgado et al. 2010; 
Carvalho et al. 2011; Ribeiro et al. 2012; Teixeira et al. 
2013; Teixeira et al. 2014). Both neural stem cells (NSCs) 
and MSCs secrete a variety of growth factors (Salgado et 
al. 2015). It was shown that the molecular content of the 
MSCs secretome depended on the culture duration and 
tissue sources of MSCs, and it influenced significantly the 
changes of primary cultures of hippocampal neurons and 
glial cells viability (Kim et al. 2013).

During the in vitro experiments, the ability of the 
HUCPVCs conditioned media to modulate the survival 
and viability of both neuronal and glial cells populations 
was shown (Salgado et al. 2015). It was demonstrated that 
application of HUCPVCs-CM to human telencephalon 
neural precursor cells (htNPCs) in vitro led to an increase 
of neuronal cell differentiation, which was characterised 
by higher densities of immature (DCX+ cells) and ma-
ture neurons (MAP-2+ cells). Moreover, an injection of 
HUCPVCs and their secretome into the dentate gyrus 
(DG) was accompanied by increasing the endogenous 
proliferation (BrdU+ cells) in a week. It was revealed that 
application of HUCPVCs led to an increased number of 
newborn neurons (DCX+ cells). And an injection of CM 
or HUCPVCs into the DG tissue promoted an elevated 
level of fibroblast growth factor-2 (FGF-2) and, to a lesser 
extent, of nerve growth factor (NGF). Thus, either trans-
plantation of HUCPVCs or the application of their condi-
tioned media potentiated enhanced neuronal viability and 
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differentiation in vitro and in vivo (Teixeira et al. 2014; 
Salgado et al. 2015).

The effect of intranasal application of CM derived from 
stem cells of human exfoliated deciduous teeth (SHEDs) in 
an animal model of Alzheimer’s disease was studied. And 
the cell-free treatment was accompanied by an improve-
ment of cognitive function and induced neuroregenerative 
effects, for example, an attenuated pro-inflammatory re-
sponse induced by amyloid plaques, and anti-inflammato-
ry M2-like microglia (Mita et al. 2015; Vizoso et al. 2017).

It was revealed that application of a secretome obtained 
from hypoxic-preconditioned MSCs promoted reduce of 
neuronal cell loss and apoptosis and production of VEGF 
which stimulated recovery processes in the organisms of 
traumatic brain injury-induced rats (Chang et al. 2013).

Angiogenesis and revascularization

Angiogenesis is a process of new vasculature sprouts 
formation from pre-existing blood vessels. This process 
normally occurs during wound healing. Numerous studies 
illustrated a particular impact of the MSCs secretome at 
the different stages of angiogenesis (Burlacu et al. 2013).

The effect of MSCs on the process of angiogenesis is 
studied in different spectrum of diseases, including im-
paired vessel growth during atherosclerosis and wound 
healing. Several studies demonstrated that the MSCs ap-
plication led to stimulation of blood vessels formation in 
animal models of myocardial infarction, neurogenic blad-
der, peripheral artery disease, stress urinary incontinence, 
and cerebral ischemia/stroke (Hsieh et al. 2013; Liu et al. 
2013; Sharma et al. 2013).

The MSCs secretome contains numerous biological-
ly active molecules which act as angiogenic stimulators 
and inhibitors (Kinnaird et al. 2004; Di Santo et al. 2009; 
Boomsma et al. 2012; Ho et al. 2012). An extensive pro-
teomic analysis of the conditioned media of mesenchy-
mal stem cells stimulated with inflammatory cytokines 
revealed the presence in a secretome of tissue inhibitor 
of metalloproteinase-1 (TIMP-1) which is responsible for 
the MSCs antiangiogenic impacts (Zanotti et al. 2016). 
Moreover, some studies showed the dependence of the 
pro- and anti-angiogenic factors secretion on chemokines 
and hypoxic conditions. In particular, to describe the ef-
fect of bioactive molecules on MSCs secretion ability, it is 
important to note that TGFα increases the level of growth 
factors in the secretome (i.e., VEGF, hepatocyte growth 
factor (HGF), platelet-derived growth factor (PDGF), IL6 
and IL8). And a conditioned medium from MSCs treat-
ed with TFG-α induces blood vessel growth in an in vivo 
assay (De Luca et al. 2011; Vizoso et al. 2017). The ob-
tained data demonstrate the complicated set of bioactive 
molecules in the MSCs secretome which can be balanced 
under the different interventions to promote angiogenesis.

The ASCs secretome also has a proangiogenic effect, 
which was demonstrated in acute myocardial infarction 
models. Rehman et al. (2004) showed that the conditioned 

media obtained from ASCs stimulated angiogenesis in the 
ischemic environment. The following bioactive molecules 
were detected in the secretome after the analysis: G-CSF, 
TGF-β, VEGF, HGF, and bFGF (Rehman et al. 2004; Ka-
pur and Katz 2013). The impact of HGF on the formation 
of blood vessels was proved through restricting the produc-
tion of this factor by ASCs, which resulted in a decreasing 
effect by ASCs on endothelial cell proliferation, migration 
and survival in the ischemic environment (Cai et al. 2007).

Cutaneous wound healing

A cutaneous wound healing is a fascinating process, 
which requires cell migration, proliferation, matrix pro-
tein synthesis, and tissue remodelling. In particular, kera-
tinocytes are involved in the epithelialization and dermal 
repair, and endothelial cells promote angiogenesis (Kober 
et al. 2016). The migration and proliferation of fibroblasts 
are the key processes in a wound healing mechanism. In 
the early stage of wound repair, they move to the damaged 
region and promote blood vessels regeneration and gra-
nulation tissue formation. In the advanced trauma stage, 
fibroblasts mature into myofibroblasts which are respon-
sible for wound closure process (Zhao et al. 2013).

It was revealed that the adipose stem cell-conditioned 
medium (ASC-CM) had a marked stimulating effect on cu-
taneous wound healing, via affecting the mechanism for this 
response by influencing effector cells (Lombardi et al. 2019).

An increased proliferation and migration activity of 
primary human dermal fibroblasts (HDFs) as well as type 
I collagen secretion was shown after ASCs secretome ap-
plication (Kim et al. 2007). Kober et al. (2016) revealed 
a stimulatory effect of ASC-CM on ASCs, and the pro-
liferation of keratinocytes after application of ASCs se-
cretome was significantly reduced. Furthermore, addition 
of ASC-CM did not affect cell migration, which had been 
tested with in vitro scratch assays. Collawn et al. (2016) 
demonstrated on a 3D skin model that application of ASC-
CM as well as ASCs promoted an acceleration of wound 
repair. Seo et al. (2017) showed that ASC-CM, similarly to 
ASCs, stimulated the proliferation, migration, and invasion 
properties of HUVECs. An addition of ASC-CM led to in-
creasing HaCaT cell proliferation and migration, as well 
as vascular endothelial growth factor (VEGF) secretion. 
Cooper et al. (2018) demonstrated that application of ASC-
CM stimulated HDF migration ability in vitro. Park et al. 
(2018) collected CM samples from cultured ASCs isolated 
from adipose tissues of breast cancer patients and added the 
secretome to HDFs, normal adult human primary epider-
mal keratinocytes (HEKa), or HUVECs cultures. It result-
ed in increased cell proliferation, migration, and invasion. 
Kim et al. (2018) showed that ASC-CM from 3D-cultures 
influenced more significantly on the proliferation of Ha-
CaT cells than the one obtained from 2D-cultivated ASCs. 
Noverina et al. (2019) analyzed the growth factor profile in 
ASC-CM via immunosorbent assay (ELISA) method and 
revealed a higher concentration level of fibroblast growth 
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factor (FGF), which is involved in wound healing and re-
generation. Stojanovic and Najman (2019) demonstrated 
the immunomodulatory and wound healing potential of 
the secretome collected from stem cells previously isolated 
from adipose tissue, or lipoma (Lombardi et al. 2019).

Some studies described the presence of growth factors 
in the MSCs secretome that promoted tissue regenera-
tion with a special focus on proliferation (Lee et al. 2011; 
Zagoura et al. 2012; Turner et al. 2013; Bhang et al. 2014; 
Bermudez et al. 2015). The experimental myocardial in-
farction models showed that anti-fibrotic and angiogenic 
effects of the MSCs secretome inhibited scar formation 
process (Cargonini et al. 2012; Preda et al. 2014) and 
stimulated the synthesis and consequent secretion of bi-
oactive molecules responsible for remodelling (Williams 
et al. 2013; Vizoso et al. 2017).

It is known that such components of the ASCs se-
cretome as bFGF significantly stimulate migration and 
proliferation of functional cells in wound healing; however 
PDGF-AA and VEGF influence only fibroblasts migration 
(Zhao et al. 2013). It was revealed that EGF could acceler-
ate reepithelialisation process via stimulating the keratino-
cytes proliferation and migration in an acute wound. Zhao 
et al. (2013) demonstrated an increased proliferation of 
fibroblasts under the EGF influence. However, the mech-
anism of the EGF effect on cells migration is still unclear.

Hu et al. (2013) showed that wound healing was mediat-
ed via application of the ASCs secretome which stimulated 
migration of vascular endothelial cells 4 hours later, fibro-
blasts 12 hours later and then keratinocytes 24 hours later.

Park et al. (2018) reported that elevated levels of 
EGF, bFGF and HGF in conditioned media promoted 
wound healing.

And finally, it was revealed that increasing prolifera-
tive and migratory characteristics of different dermis cel-
lular components, including dermal fibroblasts, keratino-
cytes, and endothelial cells, in vitro occurred by activating 
PI3K/Akt and FAK-ERK1/2 signaling (Park et al. 2017).

Muscle regeneration

Tissue regeneration and homeostasis are mediated by cell 
proliferation, migration and stem cell differentiation pro-
cesses. Mitchell et al. (2019) showed that application of 
the total secretome mouse myoblast cell line C2C12 for 
48 hours resulted in increased cell proliferation in com-
parison with the control group. Moreover, the total secre-
tome stimulated the differentiation of C2C12 cells into 
myofibers (Mitchell et al. 2019).

Mitchell et al. (2019) studied the effect of the total 
ASCs secretome and its EV fraction on tissue repair in a 
mouse model of acute cardiotoxin-induced muscle injury. 
It was revealed that the total ASCs secretome stimulated 
the process of tissue regeneration, which was confirmed 
by a significant decrease in the activity of lysosomes in the 
group of animals treated with the total ASC-CM (Mitch-
ell et al. 2019). Studying the cross-sectional area of new-

ly formed muscle fibres during the regeneration process 
revealed that the application of EV fraction had a greater 
effect than the total ASCs secretome (Mitchell et al. 2019).

Liver regeneration

Lee et al. (2014) demonstrated that liver regeneration in 
partially hepatectomised models occurred after systemic 
infusion of the ASCs secretome. It was shown that appli-
cation of ASCs-CM increased mRNA expression of Lgr5 
(a Wnt target gene), which was an indicator of actively 
dividing stem cells. Expression of Lgr5 occurred in small 
cells located near bile ducts as a result of a liver cell injury 
(Huch et al. 2013; Lee et al. 2014). During the repair pha-
se, those cells were able to generate significant numbers of 
hepatocytes and biliary duct cells and, thus, could be con-
sidered a class of liver progenitor cells. Higher expression 
of Lgr5 in small cells located near bile ducts is an indicator 
of liver regeneration (Huch et al. 2013; Lee et al. 2014).

Lee et al. (2014) showed an increased expression of 
p-Akt, p-Erk1/2, which are the downstream effector com-
ponents of HGF signaling pathways, and p-STAT3, which 
is responsible for cell cycle progression from G1 to S 
phase, after application of the ASC-secretome (Lee et al. 
2014), which indicated that the ASC-secretome promoted 
liver regeneration.

Conclusion

The MSC-conditioned medium, or secretome, contains a 
plethora of cytokines and a wide array of bioactive fac-
tors, such as chemokines, cell adhesion molecules, lipid 
mediators, IL, growth factors, hormones, exosomes, mi-
crovesicles, etc., which are secreted by MSCs (Lee et al. 
2019). These factors have been considered as protagonists 
to participate in tissue repair and regeneration through 
their paracrine actions that mediate cell-to-cell signalling 
(Madrigal et al. 2014).

It is critical for the success of such a cell-free therapy 
to identify, analyze and elucidate the mechanism of action 
of each component of the secretome.
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